Journal of Organometallic Chemistry 177 (1979) 265-272
© Elsovier Sequoia S A, Lausanne - Printed in The Netherlands

A CYCLOBUTADIENE-PALLADIUM COMPLEX WITH A NON-PLANAR CYCLOBUTADIENE RING OBTAINED FROM THE PALLADIUM CATALYZED DIMERIZATION OF AN YNAMINE *

JEAN D'ANGELO, JACQUELINE FICINI *, SERGE MARTINON,
Laboratoire de Chimıe Organıque de Synthèse, Equipe de Recherche Assocıee au C N R S No 475, Universıté Pırre et Marıe Curıe 8 rue Cuvier 75005 Parıs (France)

CLAUDE RICHE

Instıtut de Chimie des Substances Naturelles, $C N R S, 91190$ Gif sur Yvette (France)
and ALAIN SEVIN
Laboratore de Chımıe Organıque Théorıque, Equipe de Recherche Assocıée au C NRS No. 549 Unwersté Pıerre et Marie Curie 8 rue Cuvier, 75005 Parıs (France)
(Received March 30th, 1979)

Summary

A cyclobutadiene-palladium complex, obtained by dimenzation of an ynamme is described. The crystal structure of this compound shows, as salient feature, that the cyclobutadiene ring is not planar, but highly puckered. Antibonding interactions have been suggested as an explanation for this puckering.

We describe here the synthesis of the cyclobutadiene complex II, obtamed by cyclodimenzation of the ynamine I [1] in the presence of bis(benzonitrile)palladıum chloride (symbolized by Pd^{2+} in reaction 1).

(II)

[^0]The formation of a cyclobutadiene via transition metal cataly zed oligomerization of ynamines is peculiar to the ynamine I using bis(benzonitile)palladium chloride as catalyst [2] We have indeed observed previously that the dimenization which occurs with N, N-diethylaminopiopyne and cuprous salts [3a] or palladium chloride (stoichiometric amounts) [3b] is a linear one which affords the keteneaminal III, whereas a timmenzation leading to IV occuns with the same ynamine and nickel salts [3a].

(III)

(IV)

The most salient feature of the result described here is the structure of the cyclobutadiene complex II This structure, established by X-ray diffraction analysis, shows that the cyclobutadiene ring is not planar but highly puckered To our knowledge, it is the first example of a puckered cyclobutadiene, the four-membered rings of transition metal cyclobutadiene complexes have always been found to be planar [4-6] *.

A perspective view of the title compound with atom numbering is shown in Figs. 1 and 2. The complex II (Fig 1) forms a well defined entity Nevertheless, in contrast with the previously described related structures [4], in which the chlorine atoms are involved in a dımer, a water molecule of crystallization bridges two molecules of compiex II through hydrogen bonds involving the Cl atoms (oxygen-chlorne distances 328 and $341 \AA$).

The four-membered ring of I has, within experimental error, sides of equal length with an average value of $1.470 \AA$, which is in agreement with $C-C$ ring distances ($1.46-1.47 \AA$) previously reported for cyclobutadiene-metal complexes $[4,5]$.

The cyclobutadiene ring can be described as being formed by two planes including, respectively, $C(1), C(2), C(4)$ and $C(2), C(3), C(4)$ with a dihedral angle of 155° (see Fig. 2). It is worthy to note that the PdCl_{2} unit is located in the convex side of this angle. The $\mathrm{C}-\mathrm{N}$ bond distances indicate a strong participation of the lone pair to this bond. These values (1 291 and $1295 \AA$) are indeed, in agreement with the $\mathbf{C - N}$ double bond lengths found in salicylidene aniline derivatives ($128 \AA$ [7], in oximes (average $1286 \AA$) [8] and in immonium cations (average $1.285 \AA$) [9]. The participation of the lone pair is corroborated by the planarity of the three bonds around the nitrogen atoms

The carbon atoms $C(10)$ and $C(18)$ are not located in the planes $C(1), C(2)$, $C(3)$ and $C(1), C(4), C(3)$ respectively. They are pushed out of these planes, away from the Pd atom with an angle of 18° for $C(10)$ and 17° for $C(18)$.

[^1]

Fig 1 A perspective treu of complex II
The $\mathrm{Pd}-\mathrm{C}$ (cyclobutadiene) bond lengths are not equivalent The $\mathrm{C}(2)-\mathrm{Pd}$ and C(4)-Pd distances of 2101 and $2111 \AA$ are in agreement with the $\mathrm{C}-\mathrm{Pd}$ (cyclobutadiene) distances observed [4] in the cation $\left(\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{Cl}_{3} \mathrm{Pd}_{2}\right)^{+}$(average value $213 \AA$) and with the C-Pd distances obserzed in allylic complexes $212 \AA[10]$ and $2115 \AA$ [11]

On the other hand, the $C(1)-\mathrm{Pd}$ and $\mathrm{C}(3)-\mathrm{Pd}$ bond lengths (average $230 \AA$) are unusual. Noteworthy is the peculiar conformation of PdCl_{2} in the complex The two chlorine atoms exactly ecilpse the $C(2)$ and $C(4)$ atoms of the ring (Fig 2) This particular point of geometry is especially important for a theoretical approach to the structure of II The actual shape of complex II is indeed an

Fig 2 View do vn $C(2)-C(4)$ showing the puckenng of the cyclobutadiene ning of complex II

Fig 3 Molecular Orbitals of comple II
interesting problem which can be solved by simple molecular oibital (MO) considerations, using peiturbation theory arguments

Let us examine separately the two fragments of this molecule, a modified cyclobutadiene unit and the PdCl_{2} moiety, resulting from an extended Huckel calculation [12] Assuming first that the ring is planar, the two degenerate cyclobutadiene MO's are split by interactions with the attached nitrogen atoms The resulting MO's (Fig 3) are obtained ${ }^{\star}$. The PdCl_{2} molety has formally a d^{8} structure since two electrons of the d^{10} palladium atom are shared with the chlonne atoms to form the two $\mathrm{Pd}-\mathrm{Cl}$ bonds The LUMO of this fiagment thus has the d symmetiy, located in the PdCl_{2} plane

If we now look at two extreme ariangements of PdCl_{2} in the complex (left and right sides of Fig. 3), two distinct situations arise In a first geometry (right part), in which the nitrogen atoms are located in the PdCl_{2} plane, strong repulsive interactions (l_{1}) are developed beti sen the HOMO of the ning and the filled $d_{3 z} \mathrm{MO}$ of PdCl_{2} In a second one (left part), in which the $C(2)$ and $\mathrm{C}(4)$ atoms of the cyclobutadiene unit are located in the PdCl_{2} plane, the attractive interaction (l_{3}) between the HOMO of the ring and the LUMO of the PdCl_{2} fragment is optimal (small energy gap)

In the latter case, some repulsion also occurs within the SA symmetry class. The $d_{1 z} \mathrm{MO}$ is repelled by the filled SA level according to (l_{2}) and an attractive interaction is developed according to (t_{4}) If we add the two contributions, with their respective phase character, we obtain the resulting filled MO (Fig 4) in which strong out of phase interactions take place It is therefore clear that a motion of the nitrogen atoms will occur in order to avoid this unfavorable over-

[^2]
$\mathrm{Fig}_{1}+\mathrm{S} 1$ Molecular Orbital of comple, It
lap, hence the observed ring puckering (In both cases, interactions between SS MO's remain identical, while d_{1}, of AA symmetry is unchanged)

To conclude, the qualitative MO perturbation scheme explains very simply the dominant structural features of complex II, first, a rigid arrangement of the PdCl_{2} unit in a plane containing the $\mathrm{C}(2)$ and $C(4)$ atoms of the cyclobutadiene and, second, a ring puckeing resulting fiom repulsive interactions between the filled d oibitals of palladium and the p lobes located on both mitrogen atoms.

Expeimmental

Ynamine I was prepared (70\% yield) by alkylation of the lithio derivative of diethylaminoacetylene with one equivalent of methylchloromethyl ether at $-10^{\circ} \mathrm{C}$, for one hour, in an ether-hexane solution [14] The resulting mixture was then treated with $4 N$ aqueous ammona at $-40^{\circ} \mathrm{C}$ and the cold organic solution was iapidly dried on anhydrous potassium carbonate The crude ynamine, (IR $2210 \mathrm{~cm}^{-1}$) which is thermally unstable, was used in ether-hexane solution without further purification

The ether-hexane solution of the ynamine (4 equivalents) was added to a solution of bis(benzonitrile)palladium chloride [2] in dry THF at $-40^{\circ} \mathrm{C}$. The mixture was then kept at $0^{\circ} \mathrm{C}$ for 24 h . The crystalline precipitate formed was washed with THF, water, and finally again with THF Two recrystallizations from acetonitrile finally gave green-yellow crystals of complex II (35%
 34 (s) $\left(\mathrm{O}-\mathrm{CH}_{3}\right), 35(\mathrm{~m})\left(\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 40(\mathrm{~s})\left(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}\right)$

The crystal data are $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Pd} \quad \mathrm{H}_{2} \mathrm{O}$, mol wt 4778 , monoclinic

TABLE 1
ATOMIC COORDINATES ($\times 10^{4}$) WITHESD SIN PARENTHESES

Atom	2	y	z	Atom	\boldsymbol{r}	y	2
C(1)	9146 (3)	8674(2)	737(4)	N(13)	10 390(3)	8713(2)	3610(3)
C(2)	8 567(3)	8618(2)	1942(4)	C(14)	11819 (4)	8665(2)	3913(4)
C(3)	$9897(3)$	8599(2)	2514(4)	C(15)	12443 (4)	9373(3)	4043(6)
C(4)	10400 (3)	8424(2)	1314(4)	C(16)	9 528(4)	8838(2)	4638(4)
N(5)	$8741(3)$	8877(1)	-351(3)	C(17)	9 02G(4)	8158(3)	5159(5)
C(6)	9 602(4)	8881(2)	-1402(4)	C(18)	11 748(3)	8344(2)	833(4)
C(7)	$10112(5)$	9587(2)	-1693(5)	O(19)	12 288(2)	9025(1)	734(3)
C(8)	7 348(4)	9027(2)	-629(4)	C(20)	$13534(4)$	8986(2)	199(5)
C(9)	6 600(4)	8364(3)	-971(5)	Pd	$9113(0)$	$7575(0)$	1576(0)
C(10)	7 267(3)	8830(2)	2425(4)	$\mathrm{Cl}(1)$	$10300(1)$	$6612(1)$	812(1)
O(11)	7 246(2)	9573(1)	2512(3)	$\mathrm{Cl}(2)$	7 237(1)	6959(1)	2184(1)
C(12)	$6053(4)$	9821(3)	2976(5)	W	14 527(3)	7866(2)	2995(3)

I BLI 2
BOND DISFINCES OF COMIFIFYII (1)(VIF \VFSDOOOう1)

$C(1)-C(2)$	1465	C(4)-C(18)	1503	C(8)-C(9)	1511	$C(18)-O(19)$	1414
$C(1)-C(4)$	1482	(5)-C(6)	1173	C(10)-O(11)	1417	O(19)-C(20)	1426
C(1)-N(5)	1295	$\checkmark(5)-C(8)$	1471	O(11)-C(12)	$1+21$	Pd-C(4)	2111
C(2)-C(3)	1472	$\mathrm{Pa}-\mathrm{C}(1)$	2279	$\cdots(13)-C(14)$	1487	$\mathrm{P}^{2} \mathrm{~d}-\mathrm{Cl}(1)$	2367
$C(2)-C(10)$	1506	$\mathrm{Pd}-\mathrm{C}(2)$	≥ 101	V(13)-C(16)	1473	$\mathrm{Pd}-\mathrm{Cl}(2)$	2366
C(3)-C(4)	1461	$\mathrm{Pd}-\mathrm{C}(3)$	2323	$C(14)-C(15)$	1494		
$\mathrm{C}(3)-\mathrm{N}(13)$	1291	C(6)-C(7)	1477	$C(16)-C(17)$	1510		

TABLE 3
VALENCE ANGLES OF COMPLEXII (${ }^{\circ}$)(VE INESD 03°)

| $C(2)-C(1)-C(4)$ | 886 | $C(1)-C(4)-C(3)$ | 884 | $C(2)-C(10)-O(11)$ | 1078 |
| :--- | ---: | :--- | ---: | :--- | ---: | :--- |
| $C(2)-C(1)-N(5)$ | 1354 | $C(1)-C(4)-C(18)$ | 1325 | $C(10)-O(11)-C(12)$ | 1117 |
| $C(4)-C(1)-N(5)$ | 1359 | $C(3)-C(4)-C(18)$ | 1343 | $C(3)-N(13)-C(14)$ | 1224 |
| $C(1)-C(2)-C(3)$ | 886 | $C(1)-N(5)-C(6)$ | 1221 | $C(3)-N(13)-C(16)$ | 1202 |
| $C(1)-C(2)-C(10)$ | 1336 | $C(1)-P d-C 1(2)$ | 988 | $C(14)-N(13)-C(16)$ | 1172 |
| $C(3)-C(2)-C(10)$ | 1324 | $C(1)-N(5)-C(8)$ | 1209 | $N(13)-C(14)-C(15)$ | 1122 |
| $C(2)-C(3)-C(4)$ | 891 | $C(6)-N(5)-C(8)$ | 1165 | $N(13)-C(16)-C(17)$ | 1120 |
| $C(2)-C(3)-N(13)$ | 1346 | $N(5)-C(6)-C(7)$ | 1135 | $C(4)-C(18)-O(19)$ | 1075 |
| $C(4)-C(3)-N(13)$ | 1362 | $N(5)-C(8)-C(9)$ | 1114 | $C(18)-O(19)-C(20)$ | 1100 |

TABLE 4
DEVIATION (A) FROV THE PRINCIPAL LEAST SQUARES PLANES OF COMPLEX II

	$A^{\text {a }}$	$B^{\text {b }}$	c^{c}	D d	E^{e}	F^{f}
C(1)	0112	-0001			00	00
C(2)	-0113	0028	0021	0074	00	-435
C(3)	0108		-0004		00	00
C(4)	-0113	-0040	-0026	-0064	-0436	00
N(5)	0418	0036				
C(6)		0011				
C(8)		-0072				
C(10)	0026				0455	0429
N(13)	0410		0024			
C(14)			0010			
C(16)			-0044			
C(18)	0002					
	-195	-181	-178	-0021	-201	-201
CI(1)				0025		
Cl(2)				-0034		

[^3]space goup $P 2_{1} / n$, cell dimensions $a 10233(2), b 18998(3), c 10869(2) A$, $\beta 925(1)^{c}$, four molecules in the unt cell $(Z=4), D_{c} 150, \lambda\left(\right.$ Mo- $\left.K_{a}\right) 07107 \AA$ Pismatic crystals grown in acetonitrile rapidly decayed to a powder due to loss of solvent of crystallization A crystal sealed in a thin walled capıllary with a drop of mother liquor maintaned its integrity during data collection 3190 reflexions of the 4329 collected were used for structure analysis They have $I>30 \sigma(\mathrm{I}), \sigma(\mathrm{I})$ is the standard deviation from counting statistics

Scattering factors were taken from the International Tables for X-ray crystallography (1974) [15] A three dimensional Patterson synthesis yielded the position of the two palladium atoms Successive Fourier syntheses gave the location of all non-hydrogen atoms Full matrix least-squares refinements were followed by a difference Foumer synthesis which clearly revealed the position of all hydrogen atoms The final least-squares refinements resulted in a R factor of 0029 The function minimized was $\Sigma w\left(F_{0}-F_{\mathrm{c}}\right)^{2}$ and $w=1 / \sigma\left(F_{0}\right)^{2}$

The atomic coordinates and thermal parameters are listed in Table 1 Tables 2 and 3 give interatomic distances and valence angles Important planes are given in Table 4.

Acknowledgement

This investigation was supported by a complementary grant from C N.R S. (A T P Chimie de Coordınation 1977)

References

[^4]10 A E Smith Acta Crvstallogr Sect B (1965) 331
11 PS Manchand HS Wong and JF Blount, J Org Chem 43 (1978) 4769
12 RH Summervill and R Hoffmann J Amer Chem Soc 98 (1976) 7240
13 WJ Hehre W A Lathan R Ditchfield mD Neuton ind J A Pople QCPE no 236 Indiana Uniser sits Bloomington Ind
14 J Ficmi and C Barbara Bull Soc Chim France 871 (1964) J Ficmind C Barbara Bull Soc Chern France 2787 (1965)
15 International Tables for X-ras ers stallographs vol It Ks noch Press Birmingham 1974

[^0]: * Dédıé au Professeur H Normant à l'occasion de son 7 2eme annıversaire le 25 juin 1979

[^1]: * Recent ab initio molecular orbital calculations indicate that puckering may stabilize cyclobutadiene dications [6].

[^2]: * An ab initio calculation on the same structure affords the same orbital arrangement (Minumal basis set option STO-3G, of the Gaussian 70 sernes of program) [13]

[^3]: a Plane A. C(1), C(2) C(3) C(4)
 b Plane $B C(1) C(4) C(2), N(5) C(6), C(8)$
 c Plane $C=C(4) C(2), C(3), N(13) C(14) C(16)$.
 d Plane D Pd CI(1) CI(2) C(2) C(4).
 e Plane $E=C(1), C(2), C(3)$.
 f Plane $F C(1) C(4), C(3)$.

[^4]: 1 S Martinon Thesis Paris (1978)
 2 a) MS Kharasch R C Seyler and F R Mavo J Amer Chem Soc 60 (1938) 882 b) P M Matis Acc Chem Res 9 (1976) 93
 3 a) J Ficinı J d'Angelo and S Falou Tetrahedron Lett 1645 (1977) b) JP Genēt and J Ficinu Tetrahedron Lett (1979) 1499
 4 EA Kelly PM Bayev and P Y Marths J Chem Soc Chem Commun 289 (1977)
 5 a) R P Dodge and V Schomaher Nature 186 (1960) 798 R P Dodge and V Schomaker Acta Crystallogr 18 (1965) 614 b) J D Dunitz HC Mez OS Mills P Pauling and H M M Shearer Angew Chem 72 (1960) 755 JD Dunitz HC Mez OS Mlls and H M M Shearer Helv Chım Acta 45 (1962) 647 c) A I Gusev G G Aleksandrov and Yu T Struchkov Zh Strukt. Khim 10 (1969) 655 d) M Mathew and G J Palenik Can J Chem 47 (1969) 705 e) RE Davis and R Pettit J Amer Chem Soc $92(1970) 716$ f) $E F$ Epstem and LF Dahl J Amer Chem Soc 92 (1970) 493 g) EF Epstem L F Dahl J Amer Chem Soc, 92 (1970) 502 h) R E Davis H D Simpson N Gnce and R Pettit J Amer Chem Soc 93 (1971) 6688 1) C Kabuto J Hayash H Sakuran and Y Kıtahara, J Organometal Chem C 43 (1972) 23 J) I Bernal, B R Davies M O Rausch and A Siegel J Chem Soc Chem. Commun, (1972) 1169 k) G G Gash JF Helling M Mathew and G J Palenik J Organometal Chem 50 (1973) 277 1) M Mathew and G J Palenik J Organometal Chem 61 (1973) 301 m) D B Crump and N C Payne Inorg Chem 12 (1973) 1663 n) MD Rausch I Bernal, BR Davies A Siegel FA Higbie and GF Westover, J Coord Chem 3 (1974) 149 o) A C Villa L Coghı A G Manfredottı and C Guastm, Acta Crystallogr Sect B 30 (1974) 2101 p) P E Rıley and R E Davis J Organometal. Chem, 113 (1976) 157 q) P E Riley and R E Davis J Organometal Chem. 137 (1977) 91 r) G Guerch, P Mauret J Jaud and J Galy Acta Grystallogr Sect B, 33 (1977) 3747 s) E Efraty, J A Potenza, L Zyontz, J Daily, M H A Huang and B Toby J Organometal Chem 145 (1978) 315
 6 K Krogh-Jespersen P von Rague-Schleyer J A Pople and D Cremer J Amer Chem Soc 100 (1978) 4301

 7 J Bregman L Leiserouitz and G M J Schmidt J Chem Soc 2068 (1964) J Bregman L. Leıserowitz and K Osakı J Chem Soc 2068 (1964)
 8 H Gozlan, R Michelot, C Riche and R Rips, Tetrahedron 2535 (1977)
 9 DE Zachanas, Acta Crystallogr Sect B, 26 (1970) 1455

